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ABSTRACT

This thesis attempts to authenticate a smartphone user by pattern of life based on a
smartphone user’s geolocation throughout the course of a day. Current smartphone
technology uses the global positioning system (GPS) as the primary source for
geolocation because of its accuracy. However, services such as Google Location Service
and Skyhook use Receive Signal Strength Indicator (RSSI)-based geolocation in GPS-
degraded environments, such as inside a building. By using a smartphone’s Wi-Fi
application programming interface, a smartphone would detect all wireless access points’
Wi-Fi signals and associated signal strength over a discrete time interval. A hidden
Markov model is used to model various smartphone users and used as an authentication
method. The resulting f-score from the experiments ranged between 0.76 and 0.80, which
is well above the 0.20 baseline. It is feasible to use RSSI-based geolocation as an element
in combination with other methods to continuously authenticate a smartphone user. For
an acceptable authentication method, the evaluation criteria must be as close to 1.0 as
possible. Future research could combine authentication from RSSI-based geolocation
with gait and keystroke analysis to improve results by leveraging other sensors on a

smartphone.
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I. INTRODUCTION

Current smartphone technology uses the global positioning system (GPS) as a
primary source for geolocation. GPS provides localization accuracy within 7.8 meters
with continuous availability with 24 satellites. GPS requires line of sight acquisition of at
least 3 satellites in order to calculate a receiver’s current location. However, the signals
from the GPS satellites could be impeded by inclement weather or obstruction such as
buildings or mountains depending on the receiver’s antenna gain [1]. The type of GPS
receivers in smartphones varies by vendors, which results in satellite acquisition times to

vary from seconds to minutes [2].

Services like Skyhook and Google Location Services, which use a form of
received signal strength indicator (RSSI)-based geolocation, have gained in popularity
due to their accuracy, availability, and speed for indoor geolocation without GPS
coverage [3]. RSSI-based geolocation measures signal strengths of wireless access points
from various locations to build a database. The location of the smartphone is calculated
by first measuring the various signal strengths from surrounding wireless access points
then comparing to the entry of the database. RSSI-based geolocation accuracy depends
on the number of wireless access points in the database and has been shown to have
accuracy within 74 meters [4]. However, Skyhook has over 50 million wireless access

points in its database and reports accuracy within 10 to 20 meters [3].

Recent research has used GPS because of its availability and accuracy to link the
user’s’ geolocation with their daily activities. Examples of activities are walking from
the parking lot to the office or being at work. In this study, RSSI data will be used
because of its ability to provide geolocation indoors. The RSSI data of a user’s daily
activity from a smartphone will be used to build a profile of the user. A hidden Markov
model (HMM) will be used to classify users and ensure he or she is an authorized user of

the smartphone.



A. MOTIVATION

The high-level motivation for this research was to perform preliminary
experiments on methods to continuously authenticate a very important person (VIP) such
as a high-ranking diplomat. Basically, during the course of a VIP’s normal hour, day, or
week the algorithm analyzes the RSSI from wireless AP and, based on the pattern,
verifies the identity of the VIP. Conversely, if a VIP’s smartphone was lost or stolen, the
algorithm would detect a pattern, which is not normal and would identify the user as

someone other than the VIP.

B. RESEARCH QUESTION

This thesis attempts to answer the following questions:

. Is it possible to authenticate a smartphone user by continuous RSSI-based
geolocation?
. Can we use a HMM to model a user’s geolocation throughout the day?

If yes, can we distinguish between various individuals?

C. SIGNIFICANT FINDINGS

The result of this thesis shows the feasibility of continuously authenticating a
smartphone user by modeling user-behavior based on RSSI evidence. The precision,
recall, and f-score for all the experimental runs were greater than 0.7 using a HMM.
Because the machine-learning algorithm must account for temporal movements from one
location to another, classifiers that ignore the time domain, like clustering and Bayesian
networks, will not work. Since we used a small data set and restricted our test parameters,

future work is warranted.



THESIS STRUCTURE

This thesis is organized as follows:
. Chapter I cover the motivation, research questions, and significant

findings of the research to be conducted.

. Chapter II discusses prior work as it pertains to this research.

. Chapter III describes the experimental design for this research.

. Chapter IV contains the results and analysis of the experiment

. Chapter V contains the summary of the research and recommended future
work.
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II. PRIOR AND RELATED WORK

In this chapter, we first discuss prior research in the field of geolocation data from
a smartphone. Next, we describe the different sources of geolocation. Finally, we discuss

machine learning and the evaluation criteria for machine learning.

A. RELATED RESEARCH

Ashbrook and Starner [5] conducted two studies attempting to predict movements
of people. The studies used GPS-based geolocations to model human behavior. GPS
geolocation data was collected over a 4-month period in Atlanta, Georgia. Because GPS
has an accuracy of approximately 15 meters, a person could be in the exact some spot yet
log different locations. Ashbrook and Starner used k-means cluster algorithm to
normalize the GPS error by associating all latitudes and longitudes within a half-mile
radius as a single discrete location. A Markov model was then derived from the time
sequenced locations. The Markov model was able to predict the probability where a

person is headed based on their current location [5].

Liao et al. [6] used hierarchical conditional random fields (CRF) for GPS-based
activity recognition. The study collected GPS geolocation on four users for a one-week
period. The GPS locations were clustered using 10-meter segments then correlated to
street locations. The bottom layer of the hierarchical CRF contained nodes from the GPS
trace. The middle layer contained nodes of inferred activities such as walking, driving, or
getting on the bus, while the top layer contained significant places such as home, work, or
shopping. Liao et al. used the data from three users to train the data while using the fourth
as the test. The study achieved above 90% accuracy for navigation activities and

85% accuracy for significant places [6].

De Montjoye et al. [7] used anonymous cellphone data for one-and-a-half million
users over a 15-month period in Western Europe to find unique traces in human mobility.
Each time a user made or received a call or text message, the service provider logged the
time and all cellphone towers within range. Using the logs, spatial and temporal
correlated information could be derived. Figure 1 depicts a sequence of calls made by a
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user and the area where cellphone towers were in range of the user. The study did not use
machine-learning classifiers to find the traces for users. Instead, the study used set theory
to extract unique traces from a set of spatial-temporal points in the mobility dataset. A
unique trace is a vector of spatial-temporal points, which only appears once in the dataset.
The study showed four unique spatial-temporal traces is enough to uniquely identify

95% of users [7].
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Figure 1. (A) Times and locations of calls made or received and nearest
antenna. (B) Approximation of antennas reception areas. (C) Lower
resolution through spatial and temporal aggregation (from [7]).

Alvarez-Alvarez et al. [8] correlated Wi-Fi position and body posture to human
activity. In their experiment, they used Wi-Fi position information from four access
points in a 440-square meter test environment syncing sampling rate with an
accelerometer. A fuzzy rule-based classifier used the Wi-Fi geolocation to label locations
such as an office, break room, or passageway. A fuzzy finite state machine used the
accelerometer data to give relative posture of the person such as seated, standing, or
walking. A second fuzzy finite state machine fused the relative location with relative
posture to give human activity. Examples of human activities inferred in the experiment
were sitting at desk, walking to the break room, or having a meeting in a co-workers

office [8].

B. AUTHENTICATION

Authentication is a systematic method of verifying a set of credentials to validate
an authorized user. In computer security, three general factors are used for authentication:

authentication by knowledge, authentication by ownership, and authentication by
6



biometrics. Authentication by knowledge is something a person knows, such as a
password, personal identification number (PIN), or a combination lock. Examples of
authentication of ownership are keys, access cards, or badges, which an individual would
possess. Authentications by biometrics target physical attributes like fingerprints, iris

scan, or palm reader [9].

This thesis examines the possibility of authentication by behavior using the
sensors in modern smartphones. Examples of this type of authentication are gait analysis,
keystroke analysis, and pattern of life. Gait analysis is studying the uniqueness of a
person’s motion. Keystroke analysis studies the time interval between various keys while
a person types. This research will focus on pattern of life, which is a person’s movement

from various locations throughout a normal day.

C. GEOLOCATION

Geolocation is the process of locating the geographic location of an object, such
as a smartphone or handheld GPS receiver, using electronic means. Geolocation uses

positioning system such as GPS or RSSI [2].

1. GPS

GPS provides localization accuracy within 7.8 meters with continuous availability
with 24 satellites. GPS requires line of sight acquisition of at least 3 satellites in order to
calculate a receiver’s current location. However, the signals from the GPS satellites could
be impeded by inclement weather or obstruction, such as buildings or mountains,
depending on the receiver’s antenna gain [1]. The type of GPS receiver in smartphones
varies by vendor, which results in a range of satellite acquisition times varying from

seconds to minutes.

2. Geometric Triangulation of Cell Towers

Cell towers are another source of geolocation when GPS is not available. When a
mobile phone user makes or receives a call, the mobile phone logs the time and cellular
identification of cell towers in range. The estimated distance is calculated from the ping

time between cell tower and mobile phone. Using estimated distance from multiple cell
7



towers, a geometric triangulation calculates the approximate geolocation within two

kilometers [10].

3. RSSI-based

RSSI-based geolocation is often used in an indoor environment when both GPS
and cell tower signals are blocked. RSSI-based geolocation measures signal strengths of
wireless access points from various locations to build a database. Unlike cell tower
triangulation where the distance from cell tower to mobile phone is computed, the
distance from the Wi-Fi AP is not calculated from the RSSI. The RSSI is dependent on
several factors to include antenna gain, atmospheric, output power, and interference. The
location of the smartphone is calculated by first measuring the signal strengths
from surrounding Wi-Fi AP then comparing the values to a known database. RSSI-based
geolocation accuracy depends on the number of wireless access points in the database,
and has been shown to have accuracy within 74 meters [4]. However, Skyhook has
over 50 million wireless access points in its database and reports accuracy within

10 to 20 meters [3].

D. ANDROID WI-FI MANAGER APPLICATION PROGRAMMING
INTERFACE (API)

The Android Wi-Fi Manager API [11] manages all aspects of Wi-Fi connectivity
within an Android device. A smartphone user uses the Wi-Fi manager to scan for
available Wi-Fi networks and the signal strength associated with each network. Once a
user selects a Wi-Fi network to connect, the Wi-Fi manager initiates the require
authentication handshake. The following information is received from all Wi-Fi access
points within range of the mobile device:

. AP media access control (MAC) address

. Service set identifier (SSID)
. Frequency

. Channel

. RSSI

. Timestamp



Several apps are available for both Android and IOS devices. Screen shots from
Wi-Fi analyzer developed by Farproc [12] are shown in Figure 2. Wi-Fi analyzer is a free
app download from the Google store. The screen shots were taken from Glasgow East
basement, Glasgow East third floor passageway, and the Del Monte Caf¢, all located on
the NPS campus. The screen shots show each location has a distinct fingerprint of Wi-Fi

AP in relation to the Wi-Fi AP’s detected and their associated RSSI even of those in the

same building. This distinction is used in this thesis to model a smartphone user’s pattern

of life.

Z* Wifi Analyzer ® KL : Z* Wifi Analyzer ® K : Z* Wifi Analyzer ® L

Viewing snapshot: 2013-07-25-102832

Viewing snapshot: 2013-07-25-101303 Viewing snapshot: 2013-07-25-103129

NGSTV22.

GE Basement GE 3" Floor Del Monte Cafe

Figure 2. Screen shots using Wi-Fi Analyzer app

E. HIDDEN MARKOV MODEL

Machine learning is the process of making predictions about an unknown data set
based on properties learned from a known data set used to train the system. Machine
learning is sometimes incorrectly confused with data mining, which is the process of
discovering unknown properties in a data set. The premise of machine learning is to take
a data set with known labels and build a model. The model is then used to generalize and
classify unseen data. A modern example of machine learning is the email spam itself, not
spam problem. A model is built on key words and word pairs labeled by a human as

either spam or not. Using the model, the classifier will label new emails as either spam
9



or not [13]. In this thesis, a HMM, a machine learning algorithm, is used to model

individual smartphone users then attempts to label those users based on unseen patterns.

A HMM [14] is a machine learning model used when the data set is dependent on
the sequence of collection. A HMM is a probabilistic finite state automaton where the
output is dependent on the state. For this thesis, a HMM is used because the machine
learning algorithm must be able to classify smartphone user based on transitions to
various locations on the NPS campus. Classifiers such as Naive Bayes would not work
because they account for the similar Wi-Fi AP’s the students detect but not the changes

throughout the day.

1. Definition of a HMM

The mathematical definition of a HMM is a quintuple as follows:
A=(S,V,n,A,B).
S is the state alphabet, where N is the number of states:
S={s,....8y}.
V is the vocabulary alphabet for the set of symbols that may be emitted:
V=_{v,..,v,}.
Q is the fixed state sequence of length T:
0=¢q,,...q;.
O is the corresponding observations to the fixed state sequence;
O=o,,...,0;.
A is the transition probability matrix, where aj; is the probability of transitioning
from state i to state j:
A=la;l.a;=P(q,=s;1q,_,=s5,).
B is the emission probability matrix, where b;; is the probability of emitting
symbol i in state j:
B=[b,(k)],b,(k)=P(o,=v, lq =s,).
IT is the initial probability distribution giving the probability of starting in each
state:

M=[M].IL =P(g,=s,).
10



The Markov assumption states the current state is dependent only on the previous
state:
P(q,197)="P(q,1q,.).
The output-independence assumption states the observation at time t is dependent

only on the current state:
P(o, Iole,qlt) =P(o,1q,).
2. Three Fundamental Problems for HMM

There are three fundamental problems for HMM design: evaluation, decoding,
and learning. Chapter 15 of Russell and Norvig [13] describes the mathematical process
to solve the fundamental problems. Once the fundamental problems are solved, the HMM
could be applied to numerous statistical problems. Evaluation, decoding, and learning are
defined as follows:

. Evaluation: Given an observation sequence and HMM model, determine

the probability of the observation sequence.

. Decoding: Given an observation sequence and HMM model, determine

the optimal sequence of model states.
. Learning: Adjust the model parameters to best account for the observed
signals to maximize the HMM?
F. EVALUATION CRITERIA

Machine learning algorithm uses the number of true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) as measurements of performance. Their

definitions are as follows:

. TP: correctly identified
. FP: incorrectly identified
. TN: correctly rejected

. FN: incorrectly rejected.

11



1. Confusion Matrix

A confusion matrix is often used as a visualization tool showing the performance
of a classifier. An example of a confusion matrix is shown in Table 1. In the example,
there are 8 red, 6 blue, and 13 green. For class red, the confusion matrix yields the
following results:

. 5 TP: actual red classified as red

. 1 FP: blues incorrectly classified as red

. 3 FN: red incorrectly classified as blue (2) and Green (1)

. 17 TN: remaining colors classified correctly as non-red.

Inferred label

Truth | Red | Blue | Green
Red 5 2 1
Blue 1 2 3

Green 0 4 9

Table 1. Example of confusion matrix

2. Precision

Precision is also known as the positive predictive value. Precision is the fraction
of a classified class that is relevant. In our example of the confusion matrix, red would
have a precision of 5/6, which is the number of red correctly identified divided by the

total number inferred as red (total of the column). The formula for precision is as follows:

P

precision = ———— .
TP+ FP

3. Recall

Recall measures the sensitivity of the algorithm. Recall is the fraction of the class
correctly labeled from the actual class. In our example of the confusion matrix, red would
have a recall of 5/8, which is the number of red correctly identified divided the actual

number of the class (total of the row). The formula for recall is as follows:

12



TP

recall = — .
TP+ FN

4. F-score

F-score is the harmonic mean of precision and recall. F-score takes into account
precision and recall measuring the algorithm’s overall accuracy. In our example of the
confusion matrix, red would have an f-score of 0.7. The formula for f-score is as follows

[15]:

F—Score= 1 1

+
precision recall

13
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III. EXPERIMENTAL DESIGN

This chapter documents the methodologies and technical approaches in
developing the experimental design used in this thesis. The methodology includes the
research subjects and test parameters. The technical approach covers the tools used for

data collection and transforming the data to a data structure to be used in a HMM.

A. HARDWARE AND SOFTWARE

The following hardware and software were used in this project:

. Google Nexus 4 Smartphone with Android version 4.3 and 16 GB
Memory

. Power Mac Dual 3 GHz Intel Xeon processor, 16 GB 667 MHz RAM
Memory

. Python 2.7.5
° Funf Journal for Android

. Wi-Fi Analyzer for Android.
B. RESEARCH SUBJECTS

This thesis research used graduate students from NPS located in Monterey,
California, to collect RSSI data. NPS courses use the quarter system, where each student
is required to take a minimum course load of four classes each quarter. The course
lectures are one hour each given Monday through Thursday with Fridays reserved for
labs. Each student was assigned a randomly generated PIN to be used throughout this
research in order to maintain personally identifiable information confidentiality. The
students each carried a Google Nexus 4 smartphone Monday through Thursday. When
the students arrived on campus at the beginning of the day, they would turn on the
sensors for collection. If the students left campus for lunch or any other reason, they
would turn off the sensors until their return to campus. At the end of the day, the student
would turn off the sensors and lock the smartphone in a secure locker provided. In
addition, the students maintained a log of times and locations on campus. The log was
used to filter the data set for times when the student was off campus but forgot to turn off

the sensors. Table 2 lists the pin, major and the number of data points collected for each
15



of the nine students. The number of data points collected for each student varied
according to the student’s schedule. Some students stayed on campus to study while

others were only on campus for lectures.

PIN Major # Data Points
175 Computer Science 14,784
122 Computer Science 6,021
154 National Security Affairs 17,679
112 Business 15,111
198 Information Assurance 3,906
141 Business 16,337
128 National Security Affairs 13,611
111 Information Systems 6,499
372 Computer Science 14,589

Table 2. Research subject’s PIN, major, and number of data points

C. LOCATION OF EXPERIMENT

The data for this thesis was collected on the NPS campus located in Monterey,
California. The NPS campus is approximately 640 acres or 2.5 square kilometers. Figure
3 is a map of the NPS campus. Approximately one-fourth of the campus houses the
academic buildings, while the rest are tenant facilities for Naval Support Activity,
Monterey. The yellow buildings on the map are the location of the academic buildings

where a majority of the data was collected.
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Figure 3. Map of Naval Postgraduate School, Monterey, California (from [16]).

D. DATA COLLECTION PARAMETERS

Funf Journal [17] was used to collect the data for this research. Funf Journal is an
open source framework that allows researchers to use Android sensors to collect and
store data related to environmental and movement data. The app was downloaded from
the Google store. Funf contain 38 probes enabling researchers collect data such as Wi-Fi,
location, and accelerometer. Figure 4 shows screen shots of the Funf Journal positioning
probes. For this research, the probes for nearby cellular towers, simple location, and
nearby Wi-Fi devices were set to collect data every minute. The data is encrypted then
stored in a structured query language (SQL) database on the Nexus 4. The export button
allows the researcher to e-mail the encrypted files. Once on a desktop computer, the files

are decrypted in a database format (.db) then converted to a comma separated value

(CSV) file [17].



PROBES SETTINGS DATA PROBES SETTINGS DATA
Data Collection - 0.1MB of data Export
Nearby Cellular Towers 7 3

Nearby Cellular Towers

Simple Location 7 Simple Location

Nearby Bluetooth Devices Nearby Bluetooth Devices

Nearby Wifi Devices v Nearby Wifi Devices

n
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Figure 4.  Screen shot of Funf Journal

E. SPARSE MATRIX

Once the data is extracted, the fields of the CSV file are parsed and filtered. The
parsed file contains a list of tuples containing the timestamp, RSSI, and MAC address of
all the Wi-Fi AP. A python script is used to input the list of tuples to form a sparse
vector. A sparse vector and sparse matrix contains mostly zeroes [18]. The reason for
transforming the tuples into sparse vector is to allow the data set to be inputted into a
HMM. The script initially builds a vector of all zeros based on the MAC address. Each
time an unseen MAC address is detected, a new element is created with a zero entry
positioned at the sequential value based on the other MAC addresses already in the
vector. Once the sparse vector is created, the script populates the sparse matrix. Each cell
of the sparse matrix is RSSI values correlating to the MAC address. Within a minute
sampling time, if the MAC address were detected, the RSSI value would replace the zero.
The numbers of Wi-Fi AP scanned every minute varied from 1 to 20. A binary
representation of the sparse matrix of test subject PIN-372 for a Wednesday from 0800 to
1700 is shown in Figure 5. The horizontal axis is the MAC addresses while the vertical
axis is time interval in minutes. The sparse matrix shows the pattern as the user moves

from different classrooms throughout the day.
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Figure 5.  Sparse matrix

F. SPLITTING MATRIX INTO TRAINING AND TEST DATASET

The sparse matrix from each student was divided into window size of 25 minutes.
The results were several sub matrix with 25 rows for minutes and 1154 columns for the
number of total MAC address detected from all the users. Floyd’s algorithm [19] for
selecting random combinations of variables was used to divide the sub matrix into
training and test. For the initial experiment, the algorithm randomly selected 80% of the
dataset with uniform probability without replacement. The remaining 20% was used for
testing. Ten runs were conducted on each experiment each randomly generating new

training and test sets to provide ten-fold cross-validation.

G. CLASSIFIER

Once the dataset was randomly divided into training and test subsets, Gaussian
HMM from scikit-learn [20] for python 2.7.5 was used to classify each user. The results

were displayed in a confusion matrix to calculate the precision, recall, and f-score.
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IV. RESULTS AND ANALYSIS

In this chapter, we review the results of our experiment. We first start with initial
parameters of window size 25, 80% training and 20% testing, and sparse matrixes
detected RSSI values. We varied our variable in each sequential experiment. For each
experiment, ten runs were conducted resampling each time to provide ten-fold cross-
validation. We only show the confusion matrix for the first run for the initial parameters

in this chapter, the remaining confusion matrix results are in the appendix.

A. INITIAL PARAMETERS

The confusion matrix for our initial experiment is shown in Table 3. See Table 4
for the precision, recall, and f-score for each of our ten runs and the averages. For our

initial parameters, we used a window size of 25, 80% training and 20% testing.

Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 22 2 0 0 0 1 0 0 7
112 1 43 6 0 3 7 4 0 1
122 0 0 17 0 0 0 6 0 0
128 0 25 0 45 13 0 0 0 0
141 0 10 0 0 60 0 0 2 0
154 0 6 1 0 2 91 0 0 0
175 0 0 3 0 0 4 35 0 0
198 0 1 0 0 0 0 0 9 0
372 0 4 0 0 4 0 0 1 60

Table 3. Confusion Matrix for initial parameters run 1
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Precision Recall F-score
Run 1 0.81 0.77 0.77
Run 2 0.77 0.75 0.75
Run 3 0.84 0.82 0.82
Run 4 0.82 0.79 0.80
Run 5 0.83 0.81 0.81
Run 6 0.83 0.78 0.78
Run 7 0.84 0.83 0.83
Run 8 0.79 0.75 0.76
Run 9 0.81 0.79 0.79
Run 10 0.80 0.77 0.78
Avg 0.81 0.79 0.79

Table 4. Precision, Recall, and F-score from initial parameters

B. BINARY

For the binary experiment, instead of populating the sparse matrix with the RSSI
value corresponding to the MAC address, a 1 was used if a Wi-Fi AP was detected
otherwise the default value of zero was used. The resulting sparse matrixes only contain
0’s and 1’s. The purpose of this experiment is to determine if we can authenticate a user

only by the Wi-Fi AP detected and not take into account the RSSI value.

Precision Recall F-score
Run 1 0.81 0.77 0.77
Run 2 0.77 0.75 0.75
Run 3 0.84 0.82 0.82
Run 4 0.82 0.79 0.80
Run 5 0.83 0.81 0.81
Run 6 0.83 0.78 0.78
Run 7 0.84 0.83 0.83
Run 8 0.79 0.75 0.76
Run 9 0.81 0.79 0.79
Run 10 0.80 0.77 0.78
Avg 0.81 0.79 0.79

Table 5. Precision, Recall, and F-score for binary
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C. LOGARITHMIC VALUE OF RSSI

In this experiment, we attempt to normalize the dataset by taking the logarithm
value of the RSSI. The purpose for doing this is to account for the fluctuation in RSSI
due to interference. The fluctuations could cause changes in the RSSI value by +/- 3
decibels. Taking the logarithm of the RSSI value clusters near values together. For
example, log base 3 of RSSI values -26, -27, and -28 are 3.0 while RSSI values -29, -30,
and -31 are 3.1. Table 6, Table 7, and Table 8 are the precision, recall, and f-score for log
3, log 5, and log 7, respectively.

Precision Recall F-Score
Run 1 0.81 0.78 0.78
Run 2 0.79 0.79 0.79
Run 3 0.77 0.73 0.74
Run 4 0.84 0.82 0.83
Run 5 0.78 0.75 0.74
Run 6 0.79 0.77 0.77
Run 7 0.75 0.68 0.69
Run § 0.80 0.75 0.76
Run 9 0.81 0.78 0.79
Run 10 0.82 0.81 0.80
Avg 0.80 0.77 0.77

Table 6. Precision, Recall, and F-score for Log 3

Precision Recall F-Score
Run 1 0.85 0.84 0.84
Run 2 0.83 0.80 0.81
Run 3 0.79 0.74 0.74
Run 4 0.82 0.79 0.79
Run 5 0.78 0.77 0.77
Run 6 0.82 0.74 0.75
Run 7 0.80 0.74 0.75
Run § 0.84 0.80 0.80
Run 9 0.79 0.75 0.76
Run 10 0.80 0.79 0.79
Avg 0.81 0.78 0.78

Table 7. Precision, Recall, and F-score for Log 5
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Precision Recall F-Score
Run 1 0.85 0.84 0.84
Run 2 0.79 0.74 0.74
Run 3 0.85 0.83 0.83
Run 4 0.84 0.80 0.81
Run 5 0.77 0.75 0.75
Run 6 0.84 0.83 0.83
Run 7 0.81 0.77 0.78
Run § 0.81 0.80 0.80
Run 9 0.84 0.82 0.82
Run 10 0.84 0.82 0.82
Avg 0.82 0.80 0.80

Table 8. Precision, Recall, and F-score for Log 7

D. VARYING THE WINDOW SIZE

In this experiment, we vary the window size of the sparse matrix. Because NPS
classes are 50 minutes long and start on the hour, varying the window size could better
capture transition times when the students are moving from one class to another. Three
different window sizes were used in this experiment. Table 9, Table 10, and Table 11

represent the precision, recall, and f-score for window size 10, 15, and 20, respectively.

Precision Recall F-Score
Run 1 0.79 0.77 0.77
Run 2 0.76 0.75 0.74
Run 3 0.77 0.74 0.75
Run 4 0.80 0.74 0.74
Run 5 0.80 0.77 0.77
Run 6 0.76 0.74 0.74
Run 7 0.82 0.79 0.80
Run § 0.81 0.79 0.79
Run 9 0.85 0.81 0.81
Run 10 0.78 0.76 0.76
Avg 0.79 0.77 0.77

Table 9. Precision, Recall, and F-score for Window Size 10
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Precision Recall F-Score
Run 1 0.81 0.75 0.76
Run 2 0.83 0.81 0.81
Run 3 0.77 0.75 0.76
Run 4 0.80 0.77 0.78
Run 5 0.84 0.83 0.83
Run 6 0.81 0.76 0.77
Run 7 0.79 0.75 0.76
Run § 0.82 0.80 0.80
Run 9 0.80 0.74 0.76
Run 10 0.82 0.81 0.81
Avg 0.81 0.78 0.78

Table 10. Precision, Recall, and F-score for Window Size 15

Precision Recall F-Score
Run 1 0.80 0.79 0.79
Run 2 0.78 0.76 0.75
Run 3 0.71 0.68 0.68
Run 4 0.80 0.77 0.77
Run 5 0.80 0.78 0.78
Run 6 0.78 0.78 0.77
Run 7 0.81 0.80 0.80
Run § 0.85 0.83 0.83
Run 9 0.80 0.74 0.75
Run 10 0.81 0.80 0.80
Avg 0.79 0.77 0.77

Table 11. Precision, Recall, and F-score for Window Size 20

E. CHANGING PROPORTION OF TRAINING VERSUS TESTING DATA

In this experiment, we changed the proportion of training versus testing data. For
machine learning algorithms, the rule of thumb is to use 80% of the data for training and
building the model and reserving the remaining 20% to test against the completed model.
Presented in Table 12 are the precision, recall, and f-score when only 50% of the data

was used for training and the remaining 50% used for testing.
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Precision Recall F-Score
Run 1 0.79 0.73 0.72
Run 2 0.78 0.77 0.77
Run 3 0.82 0.70 0.71
Run 4 0.79 0.72 0.72
Run 5 0.75 0.72 0.72
Run 6 0.82 0.74 0.76
Run 7 0.81 0.77 0.77
Run § 0.85 0.83 0.84
Run 9 0.81 0.79 0.79
Run 10 0.83 0.82 0.82
Avg 0.80 0.76 0.76

Table 12. Precision, Recall, and F-score for 50% Training, 50% Test

F. SUMMARY OF EXPERIMENTS

Figure 6 is a summary of the average f-scores from all the experiments. As
expected, the worst performance was using only 50% of the dataset for training. Of note,
building a binary model of Wi-Fi AP detected resulted in similar results from using the
RSSI values. All variations of the experiment revealed f-scores between 0.7 and
0.8 showing a definite signal and reasonable probability of identifying a user based on

RSSI-based geolocation.
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Figure 6. Summary of average f-scores
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V. CONCLUSION AND FUTURE WORK

A. SUMMARY

The purpose of this thesis was to evaluate the feasibility of continuously
authenticating a smartphone user using RSSI-based geolocation. Previous researches
have used either GPS or cell tower geometric triangulation as geolocation sources. Our
study collected RSSI data from nine NPS students each over a four-day period. The data
collection was restricted to the NPS campus and filtered for times when the students were
on campus. The RSSI and associated Wi-Fi AP data pair were put into a sparse matrix.
The data was divided into 80% training and 20% testing. A HMM classifier was then
used to model each user. The results of the experiments yield a precision, recall, and f-
score between .70 and .85 for each of the test. The data shows RSSI-based geolocation
could be used to continuously authenticate a smartphone user, however, results must be

closer to 1.0 in order to yield the high confidence level for an authentication system.

B. FUTURE WORK

This thesis sets the foundation for future work in continuous authentication of a
smartphone user. The following are recommendations for future work:

. Increase the number of research subjects. Only nine students were used

during this research because the limitation on numbers of smartphones

available during data collection and the requirement for each research

subject to collect data for an entire week.

. Increase the diversity of the research subjects. This research focused on
data collection from NPS students. The standard course load of an NPS
student is four classes a day, equating to four hours a day on campus
unless the student remains on campus between classes or after hours.
Increasing diversity of subject pool by including professors, teaching
assistants, or administrative staff could increase the data points collected

per day.
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. Broaden the physical parameters of the research. During this research, the
data collection was restricted to NPS campus. When student left campus
for lunch, medical appointments, or end of the day, students paused the
data collection until return to campus. Future work could collect data
outside the NPS campus for better fidelity on a subject’s pattern of life
throughout the day.

. Combine this research with Lieutenant William Parker’s [21] “evaluation
of data processing techniques for unobtrusive gait authentication” and
Lieutenant Samuel Fleming’s [22] “identification of a smartphone user via

keystroke analysis.”

C. CLOSING REMARKS

Is it possible to authenticate a smartphone user by continuous RSSI-based
geolocation? With precision, recall, and f-scores above .7, it is feasible to use RSSI-based
geolocation as an element in combination with other methods to continuously
authenticate a smartphone user. For an acceptable authentication method, the evaluation
criteria must be as close to 1.0 as possible. The research parameters in this research were
very constrained, using NPS students as research subject and restricting the data
collection to the NPS campus. A larger and broader data set for future work could

increase the measure of performance to acceptable parameters.

Can we use a HMM to model a user’s geolocation throughout the day? If yes, can
we distinguish between various individuals? The result of the experiment shows a
classification model which takes temporal states into consideration such as a HMM,

could be used to model a user’s geolocation throughout the day.
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APPENDIX. CONFUSION MATRICES

A. CONFUSION MATRIX FOR INITIAL PARAMETERS

Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 24 1 0 0 0 1 0 0 6
112 1 46 2 7 0 9 0 0 0
122 0 0 18 0 0 2 3 0 0
128 2 6 7 40 22 6 0 0 0
141 0 5 0 0 65 0 0 2 0
154 11 10 2 1 1 72 3 0 0
175 0 2 4 0 0 0 36 0 0
198 1 0 0 0 0 0 0 9 0
372 2 0 0 1 0 0 0 2 64
Table 13. Confusion Matrix for initial parameters run 2
Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 27 0 0 0 0 1 0 1 3
112 0 50 2 8 1 2 1 0 1
122 0 0 20 0 0 0 3 0 0
128 2 5 0 76 0 0 0 0 0
141 0 8 0 6 58 0 0 0 0
154 11 13 3 6 1 64 0 0 2
175 0 0 0 0 0 0 42 0 0
198 0 0 0 0 0 0 0 10 0
372 5 0 0 0 4 0 0 1 59
Table 14. Confusion Matrix for initial parameters run 3
Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 20 4 0 0 0 2 0 2 4
112 0 37 2 2 0 15 8 1 0
122 0 0 16 0 0 0 2 5 0
128 0 1 0 74 0 8 0 0 0
141 0 4 0 6 60 0 0 2 0
154 0 6 1 3 0 88 2 0 0
175 0 0 17 0 0 0 25 0 0
198 0 1 0 0 0 0 0 9 0
372 0 0 0 1 0 0 0 5 63

Table 15. Confusion Matrix for initial parameters run 4
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Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 26 1 0 0 0 1 0 2 2
112 4 42 0 5 0 13 0 1 0
122 0 0 18 0 0 0 5 0 0
128 1 5 0 76 0 1 0 0 0
141 1 2 0 5 64 0 0 0 0
154 0 4 1 4 0 91 0 0 0
175 0 5 12 0 0 0 25 0 0
198 0 0 0 0 0 0 0 10 0
312 | 13 1 0 0 1 4 1 49
Table 16. Confusion Matrix for initial parameters run 5
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 24 4 0 0 0 0 0 3 1
112 0 55 0 8 1 1 0 0 0
122 0 0 19 3 0 0 1 0 0
128 0 20 0 60 3 0 0 0 0
141 0 2 0 0 68 0 0 2 0
154 0 16 0 4 1 77 2 0 0
175 0 2 17 9 0 0 14 0 0
198 0 0 0 0 0 0 0 10 0
372 2 4 0 0 0 0 0 2 61
Table 17. Confusion Matrix for initial parameters run 6
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 19 1 0 3 1 3 0 0 5
112 3 52 1 4 0 1 4 0 0
122 0 0 20 0 0 0 3 0 0
128 2 3 0 78 0 0 0 0 0
141 0 4 0 6 62 0 0 0 0
154 1 5 1 8 0 85 0 0 0
175 0 0 13 0 0 0 29 0 0
198 0 0 0 0 0 0 0 10 0
372 10 1 0 0 0 0 0 3 55

Table 18. Confusion Matrix for initial parameters run 7
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Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 26 1 0 1 0 0 0 1 3
112 1 41 4 9 0 9 0 0 1
122 0 0 16 0 0 0 7 0 0
128 22 7 0 50 0 3 0 0 1
141 6 8 0 0 56 0 0 2 0
154 0 8 1 9 1 80 0 0 1
175 0 4 0 0 0 0 38 0 0
198 0 1 0 0 0 0 0 9 0
372 7 4 0 0 0 0 0 1 57
Table 19. Confusion Matrix for initial parameters run 8
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 25 2 0 0 0 0 0 0 5
112 0 52 0 7 6 0 0 0 0
122 0 0 12 0 0 0 11 0 0
128 0 18 0 54 11 0 0 0 0
141 0 0 0 1 69 0 0 2 0
154 0 10 1 10 0 79 0 0 0
175 0 4 8 3 0 0 27 0 0
198 0 1 0 0 0 0 0 9 0
372 1 0 0 1 0 0 0 1 66
Table 20. Confusion Matrix for initial parameters run 9
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 24 1 0 1 0 0 0 1 5
112 5 41 3 7 0 3 4 0 2
122 0 0 22 0 0 0 1 0 0
128 2 6 2 63 0 6 0 0 4
141 1 10 0 5 53 0 0 3 0
154 0 5 3 6 0 84 0 0 2
175 0 0 14 0 0 0 28 0 0
198 0 0 0 0 0 0 0 10 0
372 9 0 0 0 0 0 2 58

Table 21. Confusion Matrix for initial parameters run 10
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B. CONFUSION MATRIX FOR BINARY

Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 20 5 0 0 0 2 0 0 5
112 1 29 4 11 4 9 5 2 0
122 0 0 23 0 0 0 0 0 0
128 0 0 0 83 0 0 0 0 0
141 0 1 0 6 64 0 0 1 0
154 0 0 2 9 0 89 0 0 0
175 0 0 11 0 0 0 31 0 0
198 0 0 0 0 0 0 0 10 0
372 6 0 0 1 0 4 0 1 57
Table 22. Confusion Matrix for binary run 1
Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 25 1 0 0 0 0 0 0 6
112 4 27 0 4 0 21 9 0 0
122 0 0 23 0 0 0 0 0 0
128 3 20 0 57 3 0 0 0 0
141 0 4 0 1 67 0 0 0 0
154 0 6 1 5 0 88 0 0 0
175 0 0 2 0 0 0 40 0 0
198 0 1 0 0 0 0 0 9 0
372 1 0 0 0 0 4 0 0 64
Table 23. Confusion Matrix for binary run 2
Inferred Labels
Truth | 111 112 122 128 141 154 175 198 372
111 21 2 0 0 0 0 0 1 8
112 0 34 3 1 8 15 4 0 0
122 0 0 10 0 0 0 13 0 0
128 0 24 8 37 14 0 0 0 0
141 0 0 0 0 70 0 0 2 0
154 0 10 5 1 10 73 1 0 0
175 0 0 0 0 0 0 42 0 0
198 0 0 0 0 0 0 0 10 0
372 0 0 0 0 0 3 0 2 64
Table 24. Confusion Matrix for binary run 3
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 2 0 2 1 0 0 0 0
112 0 47 0 15 1 1 0 0 1
122 0 0 23 0 0 0 0 0 0
128 0 5 0 77 1 0 0 0 0
141 0 2 0 1 66 0 0 3 0
154 0 14 2 8 0 75 0 1 0
175 0 2 14 0 0 0 26 0 0
198 0 0 0 0 0 0 0 10 0
372 2 4 0 0 0 0 0 63

Table 25. Confusion Matrix for binary run 4
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 26 0 0 2 0 0 0 2 2
112 0 37 0 5 8 5 7 3 0
122 0 0 22 0 0 0 1 0 0
128 0 10 0 59 6 8 0 0 0
141 0 0 0 1 69 0 0 2 0
154 0 14 1 7 0 76 0 2 0
175 0 0 13 0 0 0 29 0 0
198 0 0 0 0 0 0 0 10 0
372 1 0 0 0 0 1 3 64

Table 26. Confusion Matrix for binary run 5
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 3 0 0 0 0 0 1 3
112 2 38 1 11 8 4 0 1 0
122 0 1 19 0 0 0 3 0 0
128 0 15 0 68 0 0 0 0 0
141 0 0 0 6 63 0 0 3 0
154 0 9 1 2 1 86 0 1 0
175 0 4 2 0 0 4 32 0 0
198 0 0 0 0 0 0 0 10 0
372 1 0 0 1 0 0 5 62

Table 27. Confusion Matrix for binary run 6
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 30 1 0 0 0 1 0 0 0
112 4 40 2 1 0 14 4 0 0
122 0 0 22 0 0 0 1 0 0
128 1 12 1 60 0 9 0 0 0
141 2 2 0 5 61 1 0 1 0
154 43 6 1 1 1 48 0 0 0
175 0 0 12 0 0 4 26 0 0
198 0 1 0 0 0 0 0 9 0
372 9 1 0 0 0 0 0 59

Table 28. Confusion Matrix for binary run 7
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 26 4 0 0 0 0 0 0 2
112 1 56 0 1 5 2 0 0 0
122 0 1 22 0 0 0 0 0 0
128 0 22 0 61 0 0 0 0 0
141 0 0 0 5 65 0 0 2 0
154 0 17 1 0 0 82 0 0 0
175 0 5 5 0 0 0 32 0 0
198 0 1 0 0 0 0 0 9 0
372 5 1 0 0 0 4 1 58

Table 29. Confusion Matrix for binary run 8
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 28 0 0 1 0 0 0 0 3
112 12 32 1 9 0 7 3 1 0
122 0 0 21 0 0 0 2 0 0
128 4 0 0 79 0 0 0 0 0
141 2 6 0 4 56 0 0 4 0
154 5 3 19 8 1 64 0 0 0
175 0 0 1 0 0 0 41 0 0
198 0 0 0 0 0 0 0 10 0
372 3 0 0 0 1 0 1 64

Table 30. Confusion Matrix for binary run 9
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 0 0 4 3 1 0 0 0
112 1 41 0 20 1 2 0 0 0
122 0 0 21 0 0 0 2 0 0
128 0 0 0 83 0 0 0 0 0
141 0 3 0 1 65 0 0 3 0
154 0 5 2 26 0 67 0 0 0
175 0 3 5 0 0 0 34 0 0
198 0 0 0 0 0 0 0 10 0
372 8 0 0 1 0 0 0 2 58

Table 31. Confusion Matrix for binary run 10
C. CONFUSION MATRIX FOR LOG 3
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 21 2 0 0 0 0 0 0 7
112 0 45 1 3 7 0 9 0 0
122 0 0 21 0 0 0 3 0 0
128 0 15 0 41 26 0 0 0 0
141 0 0 0 0 69 0 0 3 0
154 0 11 2 5 2 80 0 0 0
175 0 4 3 0 0 0 35 0 0
198 0 1 0 0 0 0 0 9 0
372 0 0 0 0 4 0 0 1 65

Table 32. Confusion Matrix for log 3 run 1
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 20 1 0 2 0 0 0 0 7
112 0 35 2 14 1 5 1 0 7
122 0 0 18 0 0 0 6 0 0
128 0 4 0 71 2 4 0 0 1
141 0 3 0 3 63 0 0 3 0
154 5 9 1 11 0 72 1 0 1
175 0 3 3 0 0 0 36 0 0
198 0 1 0 0 0 0 0 9 0
372 3 0 0 0 0 0 0 1 66

Table 33. Confusion Matrix for log 3 run 2
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 22 1 0 0 0 1 0 1 5
112 8 36 1 8 0 5 5 2 0
122 0 0 15 0 0 7 2 0 0
128 4 24 1 50 0 2 0 1 0
141 0 10 0 6 53 0 0 3 0
154 14 9 3 3 0 71 0 0 0
175 0 1 0 0 0 0 41 0 0
198 0 0 0 0 0 0 0 10 0
372 1 4 0 0 0 0 2 63

Table 34. Confusion Mat for log 3 run 3
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 26 1 0 1 0 0 0 0 2
112 0 42 1 14 8 0 0 0 0
122 0 1 21 0 0 0 2 0 0
128 0 9 0 72 1 0 0 0 0
141 0 0 0 0 69 0 0 3 0
154 1 12 1 9 1 75 1 0 0
175 0 3 3 0 0 0 36 0 0
198 0 1 0 0 0 0 0 9 0
372 11 0 0 0 0 0 0 1 58

Table 35. Confusion Matrix for log 3 run 4
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 12 1 0 1 7 0 0 1 8
112 0 35 1 13 8 0 8 0 0
122 0 0 22 0 0 0 2 0 0
128 0 5 0 56 21 0 0 0 0
141 0 0 0 0 69 0 0 3 0
154 2 12 1 7 0 76 1 0 1
175 0 0 16 0 0 0 26 0 0
198 0 0 0 0 0 0 0 10 0
372 0 0 0 1 0 0 0 5 64

Table 36. Confusion Matrix for log 3 run 5




Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 1 0 0 0 1 0 0 1
112 8 32 0 5 7 3 0 9 1
122 0 0 20 0 0 3 1 0 0
128 0 12 0 66 0 1 0 0 3
141 0 0 0 6 63 0 0 3 0
154 10 6 0 9 0 72 1 1 1
175 0 3 13 0 0 0 26 0 0
198 0 0 0 0 0 0 0 10 0
372 2 4 0 0 0 0 0 1 63

Table 37. Confusion Matrix for log 3 run 6
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 22 2 0 0 0 0 0 0 6
112 6 34 0 3 0 9 9 2 2
122 0 0 16 0 0 0 8 0 0
128 0 13 0 51 12 3 0 0 3
141 0 9 0 0 63 0 0 0 0
154 42 12 1 0 0 42 0 1 2
175 0 0 2 0 0 0 40 0 0
198 0 0 0 0 0 0 0 10 0
372 8 0 0 0 0 0 0 1 61

Table 38. Confusion Matrix for log 3 run 7
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 1 0 0 0 0 0 0 5
112 0 46 6 0 2 3 7 1 0
122 0 0 22 0 0 0 2 0 0
128 1 9 4 60 4 4 0 0 0
141 0 2 0 0 70 0 0 0 0
154 0 41 1 2 0 56 0 0 0
175 0 0 18 0 0 4 20 0 0
198 0 0 0 0 0 0 0 10 0
372 2 5 0 0 0 0 1 62

Table 39. Confusion Matrix for log 3 run 8
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Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 22 0 0 1 0 0 0 0 7
112 0 33 7 9 0 11 3 2 0
122 0 4 19 0 0 0 1 0 0
128 0 1 0 77 0 4 0 0 0
141 0 2 0 6 61 0 0 3 0
154 1 14 1 2 0 80 0 0 2
175 0 0 19 0 0 0 23 0 0
198 0 0 0 0 0 0 0 10 0
372 0 1 0 1 0 4 0 1 63
Table 40. Confusion Matrix for log 3 run 9
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 27 0 0 1 0 0 0 0 2
112 0 28 0 18 6 3 10 0 0
122 0 0 21 0 0 0 3 0 0
128 0 2 0 65 11 4 0 0 0
141 0 0 0 0 69 0 0 3 0
154 1 5 2 10 1 81 0 0 0
175 0 0 2 0 0 0 40 0 0
198 0 0 0 0 0 0 0 10 0
372 4 1 0 0 4 0 0 1 60
Table 41. Confusion Matrix for log 3 run 10
D. CONFUSION MATRIX FOR LOG 5
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 21 0 0 0 0 0 0 0 9
112 0 51 0 5 0 5 3 1 0
122 0 0 16 0 0 0 8 0 0
128 0 7 0 70 0 5 0 0 0
141 0 9 0 6 56 0 0 1 0
154 1 5 1 5 0 88 0 0 0
175 0 1 1 0 0 0 40 0 0
198 0 1 0 0 0 0 0 9 0
372 0 0 0 1 0 3 0 1 65

Table 42. Confusion Matrix for log 5 run 1
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 22 1 0 0 0 1 0 0 6
112 0 46 1 3 0 5 7 0 3
122 0 0 21 0 0 0 3 0 0
128 5 4 0 72 0 0 0 0 1
141 1 9 0 5 56 0 0 1 0
154 12 10 1 3 0 70 3 0 1
175 0 0 4 0 0 0 38 0 0
198 0 0 0 0 0 0 0 10 0
372 2 4 0 0 0 0 0 1 63

Table 43. Confusion Matrix for log 5 run 2
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 19 1 0 0 3 0 0 2 5
112 0 46 2 3 0 1 8 5 0
122 0 0 19 0 0 0 5 0 0
128 0 25 4 26 25 1 0 1 0
141 0 9 0 0 60 0 0 3 0
154 0 12 3 3 1 81 0 0 0
175 0 0 1 0 0 0 41 0 0
198 0 0 0 0 0 0 0 10 0
372 0 0 3 0 0 0 1 66

Table 44. Confusion Matrix for log 5 run 3
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 22 0 0 1 0 0 0 2 5
112 1 36 0 19 0 3 3 3 0
122 0 0 14 0 0 0 10 0 0
128 0 0 0 79 0 3 0 0 0
141 0 4 0 6 59 0 0 3 0
154 0 3 1 15 0 81 0 0 0
175 0 2 8 0 0 1 31 0 0
198 0 0 0 0 0 0 0 10 0
372 6 0 0 4 0 1 0 1 58

Table 45. Confusion Matrix for log 5 run 4
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 20 1 0 1 0 0 0 1 7
112 1 33 10 8 0 11 0 2 0
122 0 0 9 0 0 5 10 0 0
128 4 0 0 78 0 0 0 0 0
141 0 8 0 6 54 0 0 4 0
154 0 4 1 10 0 84 1 0 0
175 0 4 10 0 0 1 27 0 0
198 0 0 0 0 0 0 0 10 0
372 0 0 0 1 0 3 0 0 66

Table 46. Confusion Matrix for log 5 run 5
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 28 0 0 2 0 0 0 0 0
112 0 38 9 11 0 0 0 7 0
122 0 0 22 0 0 0 2 0 0
128 0 0 8 74 0 0 0 0
141 0 3 0 6 60 0 0 3 0
154 4 28 6 10 1 51 0 0 0
175 0 2 15 0 0 0 25 0 0
198 0 0 0 0 0 0 0 10 0
372 7 0 0 1 4 0 0 1 57

Table 47. Confusion Matrix for log 5 run 6
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 23 2 0 0 1 0 0 0 4
112 1 53 0 1 0 3 7 0 0
122 0 0 21 0 0 0 3 0 0
128 2 22 0 51 0 7 0 0 0
141 0 4 0 6 59 0 0 3 0
154 5 45 5 0 0 45 0 0 0
175 0 0 1 0 0 0 41 0 0
198 0 0 0 0 0 0 0 10 0
372 5 0 0 0 0 0 1 64

Table 48. Confusion Matrix for log 5 run 7
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 0 0 1 0 0 0 0 4
112 2 46 0 15 0 0 2 0 0
122 0 0 23 0 0 0 1 0 0
128 0 2 0 80 0 0 0 0 0
141 0 4 0 6 59 0 0 3 0
154 12 8 1 18 0 61 0 0 0
175 0 1 10 0 0 0 31 0 0
198 0 1 0 0 0 0 0 9 0
372 7 1 0 0 0 0 0 1 61

Table 49. Confusion Matrix for log 5 run 8
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 1 0 0 0 0 0 2 0
112 5 34 1 0 5 10 6 0
122 0 0 12 0 0 0 12 0 0
128 5 5 0 68 2 0 0 0 2
141 0 10 0 0 59 0 0 3 0
154 1 13 0 2 0 80 4 0 0
175 0 0 15 0 0 0 27 0 0
198 0 0 0 0 0 0 0 10 0
372 9 0 0 1 0 4 0 1 55

Table 50. Confusion Matrix for log 5 run 9
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 19 0 0 1 0 1 0 0 9
112 3 34 7 6 0 4 9 2 0
122 0 0 12 0 0 0 12 0 0
128 1 3 7 70 0 1 0 0 0
141 0 8 0 6 57 0 0 1 0
154 1 6 2 5 1 85 0 0 0
175 0 0 0 0 0 0 42 0 0
198 0 1 0 0 0 0 0 9 0
372 4 0 0 0 0 0 0 2 64

Table 51. Confusion Matrix for log 5 run 10
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E. CONFUSION MATRIX FOR LOG 7

Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 24 2 0 0 3 1 0 0 0
112 0 38 0 14 0 7 0 6 0
122 0 0 22 0 0 0 2 0 0
128 0 0 0 80 0 0 0 0
141 0 9 0 0 63 0 0 0 0
154 2 2 2 10 1 83 0 0 0
175 0 4 1 0 0 0 37 0 0
198 0 0 0 0 0 0 0 10 0
372 8 0 0 0 0 0 0 1 61
Table 52. Confusion Matrix for log 7 run 1
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 27 1 0 0 0 0 0 0 2
112 0 54 0 8 1 2 0 0 0
122 0 2 15 0 0 4 3 0 0
128 0 29 0 39 10 4 0 0 0
141 0 4 0 0 68 0 0 0 0
154 0 31 0 5 0 63 1 0 0
175 0 8 3 0 0 0 31 0 0
198 0 0 0 0 0 0 0 10 0
372 6 5 0 0 0 1 0 1 57
Table 53. Confusion Matrix for log 7 run 2
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 20 1 0 0 0 1 0 1 7
112 0 48 0 2 0 4 8 3 0
122 0 0 24 0 0 0 0 0 0
128 0 6 0 76 0 0 0 0 0
141 0 9 0 6 57 0 0 0 0
154 0 14 1 0 1 84 0 0 0
175 0 8 6 0 0 0 28 0 0
198 0 1 0 0 0 0 0 9 0
372 0 1 0 0 4 0 0 2 63

Table 54. Confusion Matrix for log 7 run 3
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 19 1 0 1 0 0 0 0 9
112 0 56 4 5 0 0 0 0 0
122 0 0 18 0 0 0 6 0 0
128 1 2 0 79 0 0 0 0 0
141 2 10 0 4 53 0 0 3 0
154 0 25 1 6 0 68 0 0 0
175 0 2 4 0 0 4 32 0 0
198 0 0 0 0 0 0 0 10 0
372 0 6 0 1 0 0 1 62

Table 55. Confusion Matrix for log 7 run 4
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 2 0 0 0 0 0 0 1
112 8 38 0 10 8 1 0 0 0
122 0 0 21 0 0 0 3 0 0
128 0 34 0 42 6 0 0 0 0
141 0 0 0 3 66 0 0 3 0
154 1 9 1 5 12 67 5 0 0
175 0 1 5 0 0 0 36 0 0
198 0 0 0 0 0 0 0 10 0
372 2 0 0 0 0 4 0 1 63

Table 56. Confusion Matrix for log 7 run 5
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 0 0 0 0 2 0 0 3
112 2 38 0 8 9 8 0 0 0
122 0 0 21 0 0 0 3 0 0
128 4 5 0 72 0 1 0 0 0
141 0 0 0 6 63 0 0 3 0
154 0 3 1 5 1 90 0 0 0
175 0 1 13 0 0 0 28 0 0
198 0 1 0 0 0 0 0 9 0
372 1 1 0 0 0 0 1 67

Table 57. Confusion Matrix for log 7 run 6




Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 0 0 0 0 0 0 0 6
112 5 51 0 5 0 3 0 1 0
122 0 1 16 0 0 6 1 0 0
128 2 0 0 61 15 4 0 0 0
141 9 0 0 0 60 0 0 3 0
154 3 7 0 3 5 82 0 0 0
175 0 4 16 0 0 1 21 0 0
198 0 1 0 0 0 0 0 9 0
372 9 1 0 0 0 0 1 59

Table 58. Confusion Matrix for log 7 run 7
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 23 0 0 2 0 0 0 0 5
112 3 38 0 8 7 2 0 6 1
122 0 0 20 0 0 0 4 0 0
128 0 14 0 51 17 0 0 0 0
141 0 0 0 0 72 0 0 0 0
154 1 11 1 6 0 80 0 1 0
175 0 2 3 0 0 0 37 0 0
198 0 0 0 0 0 0 0 10 0
372 2 3 0 0 0 0 1 64

Table 59. Confusion Matrix for log 7 run 8
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 2 0 0 0 0 0 0 3
112 0 48 0 1 2 2 9 1 2
122 0 0 11 0 0 0 13 0 0
128 0 13 0 61 2 4 0 0 2
141 0 2 0 0 67 0 0 3 0
154 1 14 1 0 0 83 0 0 1
175 0 0 3 0 0 0 39 0 0
198 0 0 0 0 0 0 0 10 0
372 9 0 0 0 0 0 0 1 60

Table 60. Confusion Matrix for log 7 run 9
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Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 21 0 0 0 6 1 0 0 2
112 1 43 2 1 8 8 0 2 0
122 0 0 21 0 0 0 3 0 0
128 4 5 7 50 11 5 0 0 0
141 0 0 0 0 69 0 0 3 0
154 1 2 3 0 1 93 0 0 0
175 0 3 3 0 0 0 36 0 0
198 0 0 0 0 0 0 0 10 0
372 7 0 0 0 0 0 0 2 61
Table 61. Confusion Matrix for log 7 run 10
F. CONFUSION MATRIX FOR WINDOW SIZE 10
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 61 1 0 3 20 0 0 1 7
112 2 118 15 15 0 14 12 0 0
122 0 0 61 0 0 0 11 0 0
128 1 6 11 166 28 8 0 0 0
141 0 12 1 0 173 0 6 0
154 1 32 7 13 16 174 22 0 0
175 0 1 20 0 0 0 97 0 0
198 0 3 0 0 0 0 0 36 0
372 15 3 0 2 2 0 0 4 161
Table 62. Confusion Matrix for window size 10 run 1
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 48 5 1 2 8 5 0 4 20
112 6 74 24 32 0 9 19 8 4
122 0 0 36 0 0 0 36 0 0
128 0 3 11 195 3 0 0 0 8
141 2 23 0 12 147 0 0 8 0
154 1 13 16 21 0 209 0 0 5
175 0 4 0 0 0 11 103 0 0
198 1 0 0 0 0 0 0 38 0
372 0 12 0 0 0 0 1 6 168

Table 63. Confusion Matrix for window size 10 run 2




Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 65 4 0 3 0 0 0 1 20
112 16 75 24 22 0 12 0 0 27
122 0 4 59 0 0 0 9 0 0
128 12 10 13 171 0 14 0 0 0
141 11 28 0 9 138 0 0 6 0
154 6 12 16 16 0 209 0 0 6
175 0 12 24 0 0 0 82 0 0
198 2 2 0 0 0 0 0 35 0
372 0 5 0 0 0 0 4 178

Table 64. Confusion Matrix for window size 10 run 3
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 2 0 2 0 0 0 1 3
112 0 41 5 12 0 1 2 3 1
122 0 1 22 0 0 0 0 0 0
128 0 10 0 73 0 0 0 0 0
141 0 6 0 5 56 0 0 4 1
154 3 14 2 13 0 62 5 1 0
175 0 1 29 0 0 0 12 0 0
198 0 0 0 0 0 0 10 0
372 1 0 0 0 0 0 0 1 67

Table 65. Confusion Matrix for window size 10 run 4
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 29 1 0 0 0 0 0 1 1
112 0 40 5 6 7 3 3 0 1
122 0 0 21 0 0 0 2 0 0
128 5 29 0 45 0 4 0 0 0
141 3 0 0 3 64 0 0 2 0
154 6 6 2 5 1 80 0 0 0
175 0 0 14 0 0 0 28 0 0
198 0 0 0 0 0 0 0 10 0
372 2 0 0 1 0 0 0 66

Table 66. Confusion Matrix for window size 10 run 5




Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 19 0 0 0 5 3 0 2 3
112 0 26 2 14 1 9 9 4 0
122 0 0 18 0 0 0 5 0 0
128 0 3 0 61 19 0 0 0 0
141 0 10 0 0 60 0 0 2 0
154 0 4 1 8 0 85 1 1 0
175 0 0 15 0 0 0 27 0 0
198 0 0 0 0 0 0 10 0
372 1 1 0 0 0 0 4 1 62

Table 67. Confusion Matrix for window size 10 run 6
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 0 0 0 0 2 0 0 5
112 0 36 9 1 0 18 0 1 0
122 0 0 13 0 0 0 5 5 0
128 0 5 8 61 7 2 0 0 0
141 0 8 0 0 62 0 0 2 0
154 0 3 6 3 1 87 0 0 0
175 0 2 1 0 0 0 39 0 0
198 0 1 0 0 0 0 0 9 0
372 2 0 0 0 0 1 5 61

Table 68. Confusion Matrix for window size 10 run 7
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 26 2 0 0 0 0 0 0 4
112 1 42 1 2 6 3 8 0 2
122 0 0 12 0 0 2 9 0 0
128 0 4 0 79 0 0 0 0 0
141 2 0 0 4 63 0 0 3 0
154 5 26 0 7 0 62 0 0 0
175 0 4 3 0 0 0 35 0 0
198 0 1 0 0 0 0 9 0
372 2 0 0 1 0 0 1 65

Table 69. Confusion Matrix for window size 10 run 8




Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 2 0 0 0 0 0 1 2
112 0 51 2 1 6 2 3 0 0
122 0 1 19 0 0 0 3 0 0
128 0 17 1 54 11 0 0 0 0
141 0 0 0 0 70 0 0 2 0
154 0 24 1 0 1 74 0 0 0
175 0 1 0 0 0 4 37 0 0
198 0 1 0 0 0 0 0 9 0
372 7 0 0 0 0 0 0 2 60

Table 70. Confusion Matrix for window size 10 run 9
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 18 2 0 1 0 0 0 2 9
112 0 45 3 9 6 2 0 0 0
122 0 1 16 0 0 0 6 0 0
128 2 3 0 60 14 4 0 0 0
141 0 0 0 0 72 0 0 0 0
154 1 15 1 10 1 70 1 1 0
175 0 5 12 0 0 0 25 0 0
198 0 1 0 0 0 0 0 9 0
372 0 0 0 0 4 1 0 2 62

Table 71. Confusion Matrix for window size 10 run 10
G. CONFUSION MATRIX FOR WINDOW SIZE 15
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 38 1 0 2 0 0 0 4 14
112 2 57 6 14 12 0 14 10 0
122 0 0 21 0 0 0 14 9 0
128 0 1 14 98 27 0 0 4 0
141 0 0 0 1 122 0 0 2 0
154 1 3 8 18 1 134 0 9 0
175 0 0 16 0 0 0 61 0 0
198 0 0 0 0 0 0 0 23 0
372 3 0 0 0 0 0 0 15 103

Table 72. Confusion Matrix for window size 15 run 1
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 40 6 0 0 0 3 0 0 10
112 0 79 2 4 0 17 13 0 0
122 0 0 38 0 0 0 6 0 0
128 1 25 1 111 1 5 0 0 0
141 0 8 0 2 103 9 0 3 0
154 0 16 3 7 0 146 2 0 0
175 0 1 10 0 0 0 65 0 0
198 0 2 0 0 0 0 0 21 0
372 2 1 0 0 0 9 0 0 109

Table 73. Confusion Matrix for window size 15 run 2
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 47 3 0 1 0 0 0 2 6
112 0 67 3 15 12 9 7 1 1
122 0 1 33 0 0 1 9 0 0
128 0 34 3 100 1 6 0 0 0
141 0 0 0 10 110 0 0 3 2
154 0 16 6 14 1 134 2 1 0
175 0 8 22 0 0 7 39 0 0
198 0 0 0 0 0 0 0 23 0
372 2 1 8 0 0 0 0 0 110

Table 74. Confusion Matrix for window size 15 run 3
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 19 2 0 1 0 0 0 1 9
112 0 43 6 11 0 1 4 0 0
122 0 0 17 0 0 1 5 0 0
128 4 9 0 70 0 0 0 0 0
141 0 4 0 6 60 0 0 2 0
154 4 11 1 11 0 64 9 0 0
175 0 0 3 0 0 0 39 0 0
198 0 1 0 0 0 0 0 9 0
372 0 4 0 0 0 0 2 63

Table 75. Confusion Matrix for window size 15 run 4




Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 1 0 0 0 0 1 4
112 1 54 1 3 0 0 4 0 2
122 5 0 16 0 1 0 1 0 0
128 0 4 0 75 0 0 0 0 4
141 0 7 0 6 57 0 0 2 0
154 0 14 1 3 1 78 1 0 2
175 0 1 2 0 0 4 35 0 0
198 0 1 0 0 0 0 0 9 0
372 6 0 0 0 0 0 0 1 62

Table 76. Confusion Matrix for window size 15 run 5
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 29 2 0 0 0 0 0 1 0
112 8 45 3 5 1 2 0 1 0
122 0 1 21 0 0 0 1 0 0
128 1 24 0 47 11 0 0 0 0
141 0 4 0 0 65 0 0 3 0
154 0 17 2 4 7 70 0 0 0
175 0 4 3 0 0 4 31 0 0
198 0 1 0 0 0 0 0 9 0
372 3 4 0 0 0 0 0 1 61

Table 77. Confusion Matrix for window size 15 run 6
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 20 5 0 2 0 0 0 2 3
112 0 37 0 16 0 6 3 3 0
122 0 0 12 0 0 0 11 0 0
128 0 4 0 73 6 0 0 0
141 0 3 0 8 55 0 0 6 0
154 0 20 1 10 1 67 0 1 0
175 0 4 0 0 0 0 38 0 0
198 0 0 0 0 0 0 0 10 0
372 2 0 0 0 0 1 5 61

Table 78. Confusion Matrix for window size 15 run 7
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 17 1 0 0 3 2 0 3 6
112 3 40 0 8 0 5 2 7 0
122 0 0 20 0 0 0 3 0 0
128 0 1 0 81 1 0 0 0 0
141 0 10 0 3 57 0 0 2 0
154 3 6 1 14 1 72 2 1 0
175 0 4 2 0 0 0 36 0 0
198 0 0 0 0 0 0 0 10 0
372 0 0 0 1 0 0 4 2 62

Table 79. Confusion Matrix for window size 15 run 8
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 26 0 0 0 0 0 0 1 5
112 11 35 4 7 0 5 3 0 0
122 0 0 12 0 5 0 6 0 0
128 9 0 0 74 0 0 0 0 0
141 1 6 0 5 60 0 0 0 0
154 15 4 1 10 1 67 2 0 0
175 0 0 14 0 0 0 28 0 0
198 0 0 0 0 0 0 0 10 0
372 10 1 0 0 0 0 0 1 57

Table 80. Confusion Matrix for window size 15 run 9
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 20 3 0 1 0 1 0 0 7
112 1 41 1 7 8 7 0 0 0
122 0 0 21 0 0 0 2 0 0
128 2 1 0 64 0 16 0 0 0
141 0 0 0 6 64 0 0 2 0
154 0 5 2 7 0 86 0 0 0
175 0 5 3 0 0 1 33 0 0
198 0 1 0 0 0 0 0 9 0
372 0 1 0 0 0 2 1 65

Table 81. Confusion Matrix for window size 15 run 10
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H. CONFUSION MATRIX FOR WINDOW SIZE 20

Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 28 0 0 0 7 0 0 1 6
112 4 43 5 9 8 4 7 2 2
122 0 0 21 0 0 0 10 0 0
128 0 12 1 71 21 1 0 0 0
141 0 0 0 0 87 0 0 4 0
154 1 7 3 6 0 106 2 1 2
175 0 0 5 0 0 0 49 1 0
198 0 0 0 0 0 0 0 15 0
372 0 1 0 0 0 0 0 0 88
Table 82. Confusion Matrix for window size 20 run 1
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 28 0 0 0 6 0 0 2 6
112 0 42 1 5 6 27 0 2 1
122 0 0 19 0 0 5 7 0 0
128 3 4 1 52 28 17 1 0 0
141 0 1 0 0 90 0 0 0 0
154 1 8 2 1 1 114 0 0 1
175 0 4 7 0 0 0 44 0 0
198 0 0 0 0 0 0 0 15 0
372 3 1 0 0 0 0 0 3 82
Table 83. Confusion Matrix for window size 20 run 2
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 25 1 0 0 6 1 0 2 7
112 4 49 11 11 1 2 0 6 0
122 0 0 20 0 0 0 11 0 0
128 0 7 6 56 27 10 0 0 0
141 0 13 0 0 75 0 0 3 0
154 7 40 2 3 1 72 1 2 0
175 0 4 3 0 0 6 42 0 0
198 0 0 0 0 0 0 0 15 0
372 0 1 0 0 0 2 0 3 83

Table 84. Confusion Matrix for window size 20 run 3
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 23 0 0 1 0 0 0 0 8
112 2 40 1 10 8 3 0 0 1
122 0 0 22 0 0 0 1 0 0
128 1 1 0 49 27 4 0 0 1
141 0 0 0 0 70 0 0 2 0
154 3 3 4 5 0 83 1 0 1
175 0 2 16 0 0 0 24 0 0
198 0 1 0 0 0 0 0 9 0
372 1 2 2 0 0 0 0 0 64

Table 85. Confusion Matrix for window size 20 run 4
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 0 0 2 0 0 0 1 2
112 2 34 6 7 7 3 2 4 0
122 0 0 18 0 0 0 5 0 0
128 0 4 8 65 0 6 0 0 0
141 0 0 0 6 66 0 0 0 0
154 8 8 3 6 0 73 1 1 0
175 0 2 5 0 0 0 34 1 0
198 0 0 0 0 0 0 0 10 0
372 6 0 0 0 0 1 0 4 58

Table 86. Confusion Matrix for window size 20 run 5
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 0 0 0 0 3 0 0 2
112 0 30 1 10 7 7 9 0 1
122 0 0 23 0 0 0 0 0 0
128 0 8 0 70 0 5 0 0 0
141 0 0 0 6 64 0 0 2 0
154 0 4 1 5 1 87 1 0 1
175 0 4 14 0 0 4 20 0 0
198 1 0 0 0 0 0 0 9 0
372 8 0 0 0 4 0 0 1 56

Table 87. Confusion Matrix for window size 20 run 6
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 0 0 0 0 1 0 0 6
112 1 43 8 3 8 2 0 0 0
122 0 0 18 0 0 0 5 0 0
128 0 26 0 49 2 6 0 0 0
141 0 0 0 3 69 0 0 0 0
154 0 6 2 3 1 88 0 0 0
175 0 0 4 0 0 4 34 0 0
198 0 0 0 0 0 0 0 10 0
372 6 0 0 0 0 0 1 62

Table 88. Confusion Matrix for window size 20 run 7
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 25 0 0 2 0 0 0 1 4
112 2 40 0 17 0 1 4 1 0
122 0 0 13 0 0 0 10 0 0
128 3 7 0 73 0 0 0 0 0
141 2 4 0 0 64 0 0 2 0
154 1 6 1 10 0 82 0 0 0
175 0 0 0 0 0 0 42 0 0
198 0 0 0 0 0 0 0 10 0
372 4 1 0 0 0 0 0 0 64

Table 89. Confusion Matrix for window size 20 run 8
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 21 0 0 0 0 1 0 1 9
112 7 39 0 9 5 5 0 0 0
122 0 1 20 0 0 0 2 0 0
128 30 4 0 48 0 1 0 0 0
141 6 0 0 0 64 0 0 2 0
154 11 3 5 5 0 75 1 0 0
175 0 4 15 0 0 0 23 0 0
198 0 0 0 0 0 0 0 10 0
372 0 1 0 0 0 0 0 1 67

Table 90. Confusion Matrix for window size 20 run 9
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Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 26 0 0 1 0 1 0 0 4
112 5 31 0 13 7 6 0 1 2
122 0 0 22 0 0 0 1 0 0
128 0 12 0 71 0 0 0 0 0
141 1 0 0 5 64 0 0 2 0
154 0 14 0 7 0 77 0 0 2
175 0 4 10 0 0 0 28 0 0
198 0 0 0 0 0 0 0 10 0
372 2 0 0 0 0 0 1 66
Table 91. Confusion Matrix for window size 20 run 10
| CONFUSION MATRIX FOR 50% TRAINING, 50% TEST
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 16 5 0 0 3 1 0 1 9
112 0 42 10 0 4 4 8 0 0
122 0 0 17 0 0 0 9 0 0
128 0 45 8 28 1 4 0 0 0
141 0 1 0 2 70 0 0 2 0
154 0 8 5 0 1 89 0 0 0
175 0 0 3 0 0 0 42 0 0
198 0 1 0 0 0 0 0 12 0
372 0 0 0 0 0 5 0 2 65
Table 92. Confusion Matrix for 50% training, 50% test run 1
Inferred Labels
Truth 111 112 122 128 141 154 175 198 372
111 29 0 0 0 0 2 0 1 3
112 2 32 1 14 2 8 9 0 0
122 0 0 10 9 0 0 7 0 0
128 5 2 0 77 0 2 0 0 0
141 4 10 0 2 57 0 0 2 0
154 0 7 1 8 1 85 1 0 0
175 0 0 11 0 0 0 34 0 0
198 0 0 0 0 0 0 0 13 0
372 3 0 0 0 1 0 0 0 68

Table 93. Confusion Matrix for 50% training, 50% test run 2
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 1 0 5 0 0 0 0 5
112 0 57 9 0 0 0 0 1 1
122 0 0 25 0 0 0 1 0 0
128 0 25 8 53 0 0 0 0 0
141 0 10 0 6 57 0 0 2 0
154 0 29 5 0 0 69 0 0 0
175 0 7 31 0 0 0 7 0 0
198 0 1 0 0 0 0 0 12 0
372 5 5 0 0 0 0 0 1 61

Table 94. Confusion Matrix for 50% training, 50% test run 3
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 0 0 2 0 0 0 0 9
112 4 45 6 7 0 3 0 2 1
122 0 0 26 0 0 0 0 0 0
128 1 8 0 68 0 6 0 0 3
141 0 10 0 5 60 0 0 0 0
154 42 3 2 7 1 47 0 0 1
175 0 0 18 0 0 0 26 1 0
198 1 0 0 0 0 0 0 12 0
372 4 0 0 0 0 0 1 67

Table 95. Confusion Matrix for 50% training, 50% test run 4
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 1 0 0 0 0 0 0 4
112 9 29 4 0 5 15 2 1 0
122 0 0 17 0 0 0 6 0 0
128 1 47 0 31 0 4 0 0 0
141 0 0 0 6 66 0 0 0 0
154 1 12 1 0 2 82 2 0 0
175 0 2 8 0 0 4 28 0 0
198 0 0 0 0 0 0 0 10 0
372 1 0 0 0 0 0 0 1 67

Table 96. Confusion Matrix for 50% training, 50% test run 5
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 2 0 0 0 1 0 0 5
112 0 48 9 0 0 2 6 0 0
122 0 0 21 0 0 0 2 0 0
128 0 26 8 49 0 0 0 0 0
141 0 10 0 6 54 0 0 2 0
154 0 12 5 0 0 83 0 0 0
175 0 0 19 0 0 0 23 0 0
198 0 0 0 0 0 0 0 10 0
372 8 5 0 0 0 0 1 55

Table 97. Confusion Matrix for 50% training, 50% test run 6
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 27 0 0 0 0 1 0 0 4
112 2 29 9 6 8 11 0 0 0
122 0 0 17 0 0 0 6 0 0
128 2 0 8 58 0 15 0 0 0
141 1 0 0 5 63 0 0 3 0
154 1 0 5 1 0 93 0 0 0
175 0 4 10 0 0 0 28 0 0
198 0 0 0 0 0 1 0 9 0
372 3 0 0 1 0 4 0 1 60

Table 98. Confusion Matrix for 50% training, 50% test run 7
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 24 0 0 0 0 2 0 0 6
112 0 47 9 2 1 5 0 1 0
122 0 0 20 0 0 0 3 0 0
128 0 1 8 68 0 6 0 0 0
141 2 3 0 4 63 0 0 0 0
154 0 8 6 1 1 83 1 0 0
175 0 1 2 0 0 0 39 0 0
198 0 1 0 0 0 0 0 9 0
372 3 0 0 0 4 1 0 2 59

Table 99. Confusion Matrix for 50% training, 50% test run 8
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Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 19 3 0 2 0 0 0 0 8
112 5 32 8 8 8 0 4 0 0
122 0 0 15 0 0 0 8 0 0
128 2 2 2 77 0 0 0 0 0
141 0 0 0 6 64 0 0 2 0
154 5 7 4 10 0 74 0 0 0
175 0 0 2 0 0 0 40 0 0
198 0 1 0 0 0 0 0 9 0
372 5 1 0 0 0 0 1 62

Table 100. Confusion Matrix for 50% training, 50% test run 9
Inferred Labels

Truth 111 112 122 128 141 154 175 198 372
111 26 1 0 0 0 1 0 2 2
112 1 44 0 3 1 7 7 1 1
122 0 0 18 0 0 0 5 0 0
128 0 6 0 66 0 11 0 0 0
141 0 2 0 6 61 0 0 3 0
154 2 3 1 6 1 86 0 0 1
175 0 4 0 0 0 0 38 0 0
198 0 0 0 0 0 0 0 10 0
372 3 1 0 0 4 0 2 59

Table 101. Confusion Matrix for 50% training, 50% test run 10
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